Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.3 Exercises - Page 745: 24

Answer

Convergent

Work Step by Step

Let $f(x)=\frac{x^2}{e^x}$. This function is continuous and decreasing on $[3,\infty)$. We will evaluate $\int_3^\infty f(x) dx$. Notice that: $\int \frac{x^2}e^{x}dx=\int x^2e^{-x}dx$ (Use the IBP for $u=x^2\to du=2x$ and $dv=e^{-x}dx\to v=-e^{-x}$) $=-x^2e^{-x}+\int 2xe^{-x} dx$ (Use the IBP for $u=2x\to du=2dx$ and $dv=e^{-x}dx\to v=-e^{-x}$) $=-x^2e^{-x}-2xe^{-x}+\int 2e^{-x}dx$ $=-x^2e^{-x}-2xe^{-x}-2e^{-x}$ $=-(x^2+2x+2)e^{-x}$ Then, $\int_3^\infty \frac{x^2}{e^{x}}dx=-(x^2+2x+2)e^{-x}]_3^\infty=17e^{-3}$ So, the integral $\int_3^\infty f(x)dx$ is convergent. Using the Integral Test for Series, $\sum_{n=3}^\infty \frac{n^2}{e^n}$ is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.