Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.3 Exercises - Page 745: 20

Answer

Convergent

Work Step by Step

Let $f(x)=\frac{1}{x^2+6x+13}$. This function is continuous and decreasing on $[1,\infty)$. Evaluate $\int_1^\infty f(x) dx$: $\int_1^\infty\frac{1}{x^2+6x+13}dx=\int_1^\infty \frac{1}{(x+3)^2+2^2}dx$ $=\frac{1}{2}\tan^{-1}(\frac{x+3}{2})]_1^\infty$ $=\frac{1}{2}\cdot \frac{\pi}{2}-\frac{1}{2}\cdot \frac{\pi}{4}$ $=\frac{\pi}{8}$ So, the integral $\int_1^\infty f(x)dx$ is convergent. Using The Integral Test for Series, $\sum_{n=1}^\infty \frac{1}{n^2+6n+13}$ is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.