Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.3 Exercises - Page 745: 19

Answer

Convergent

Work Step by Step

Define $f(x)=\frac{\ln x}{x^3}$. This function is continuous and decreasing on $[2,\infty)$. Evaluate $\int_2^\infty f(x) dx$: $\int_2^\infty \frac{\ln x}{x^3}dx=\int_2^\infty \ln x\cdot \frac{1}{x^3}dx$ (Let $u=\ln x$ and $dv=\frac{1}{x^3}dx$ $\to du=\frac{1}{x}dx$ and $v=-\frac{1}{2x^2}$) $=\ln x\cdot (-\frac{1}{2x^2})]_2^\infty -\int_2^\infty -\frac{1}{2x^2}\cdot \frac{1}{x}dx$ (By Integration by Parts) $=-\frac{\ln x}{2x^2}]_2^\infty -\int_2^\infty -\frac{1}{2x^3}dx$ $=0+\frac{\ln 2}{8}-[\frac{1}{4x^2}]_2^\infty$ $=\frac{\ln 2}{8}-(0-\frac{1}{8})$ $=\frac{\ln 2+1}{8}$ It means that the integral $\int_2^\infty f(x)dx$ is convergent. Using The Integral Test for Series, $\sum_{n=1}^\infty \frac{\ln n}{n^3}=\sum_{n=2}^\infty \frac{\ln n}{n^3}$ is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.