Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1136: 37

Answer

\[V=\frac{4}{3}\]

Work Step by Step

\[\begin{align} & \text{The volume is given by} \\ & V=\int_{0}^{1}{\int_{0}^{2}{\left( 1-{{x}^{2}} \right)}dydx} \\ & V=\int_{0}^{1}{\left[ \left( 1-{{x}^{2}} \right)y \right]_{0}^{2}dx} \\ & V=\int_{0}^{1}{2\left( 1-{{x}^{2}} \right)dx} \\ & V=\left[ 2x-\frac{2{{x}^{3}}}{3} \right]_{0}^{1} \\ & \text{Evaluate} \\ & V=\left[ 2\left( 1 \right)-\frac{2{{\left( 1 \right)}^{3}}}{3} \right]-\left[ 2\left( 0 \right)-\frac{2{{\left( 0 \right)}^{3}}}{3} \right] \\ & V=\frac{4}{3} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.