Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1136: 36

Answer

\[\int_{0}^{2}{\int_{{{e}^{y}}}^{{{e}^{2}}}{f\left( x,y \right)}dxdy}\]

Work Step by Step

\[\begin{align} & \int_{1}^{{{e}^{2}}}{\int_{0}^{\ln x}{f\left( x,y \right)}dydx} \\ & y=\ln x\to x={{e}^{y}} \\ & \text{Using the graph to switch the order of integration} \\ & \text{We can define the region }R\text{ as:} \\ & R=\left\{ \left( x,y \right):{{e}^{y}}\le x\le {{e}^{2}},\text{ }0\le y\le 2\text{ } \right\} \\ & \text{Then} \\ & \int_{1}^{{{e}^{2}}}{\int_{0}^{\ln x}{f\left( x,y \right)}dydx}=\int_{0}^{2}{\int_{{{e}^{y}}}^{{{e}^{2}}}{f\left( x,y \right)}dxdy} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.