Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.5 - Double Integrals and Applications - Exercises - Page 1136: 35

Answer

\[\int_{1}^{4}{\int_{1}^{\frac{2}{\sqrt{y}}}{f\left( x,y \right)}dxdy}\]

Work Step by Step

\[\begin{align} & \int_{1}^{2}{\int_{1}^{4/{{x}^{2}}}{f\left( x,y \right)}dydx} \\ & y=\frac{4}{{{x}^{2}}}\to x=\frac{2}{\sqrt{y}} \\ & \text{Using the graph to switch the order of integration} \\ & \text{We can define the region }R\text{ as:} \\ & R=\left\{ \left( x,y \right):1\le x\le \frac{2}{\sqrt{y}},\text{ }1\le y\le 4\text{ } \right\} \\ & \text{Then} \\ & \int_{1}^{2}{\int_{1}^{4/{{x}^{2}}}{f\left( x,y \right)}dydx}=\int_{1}^{4}{\int_{1}^{\frac{2}{\sqrt{y}}}{f\left( x,y \right)}dxdy} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.