Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.3 - The Definite Integral: Numerical and graphical Viewpoints - Exercises - Page 986: 5

Answer

$\approx 0.7456$

Work Step by Step

The interval [a,b] is subdivided into n intervals, f is a continuous function over [a,b], Left Riemann sum $=\displaystyle \sum_{k=0}^{n-1}f(x_{k})\Delta x$ $=[f(x_{0})+f(x_{1})+\cdots+f(x_{n-1})]\Delta x$, where $a=x_{0} < x_{1} < \cdots < x_{n}=b$ are the endpoints of the subdivisions, and $\displaystyle \Delta x=\frac{b-a}{n}$. ----------------- $f(x)=\displaystyle \frac{1}{1+x},\ \ [a,b]=[0,1],\ \ n=5$ $\displaystyle \Delta x=\frac{b-a}{n}=\frac{1-0}{5}=0.2$ $\left[\begin{array}{lllllll} k & 0 & 1 & 2 & 3 & 4 & 5\\ x_{k} & 0 & 0.2 & 0.4 & 0.6 & 0.8 & 1\\ f(x_{k}) & 1 & 5/6 & 5/7 & 5/8 & 5/9 & ... \end{array}\right]$ $ f(0)=\displaystyle \frac{1}{1}\quad$ $f(0.2)=\displaystyle \frac{1}{1.2}=\frac{10}{12}=\frac{5}{6}$ $f(0.4)=\displaystyle \frac{1}{1.4}=\frac{10}{14}=\frac{5}{7}$ $f(0.6)=\displaystyle \frac{1}{1.6}=\frac{10}{16}=\frac{5}{8}$ $f(0.8)=\displaystyle \frac{1}{1.8}=\frac{10}{18}=\frac{5}{9}$ Left Riemann sum $=(1+\displaystyle \frac{5}{6}+\frac{5}{7}+\frac{5}{8}+\frac{5}{9})\cdot 0.2\approx 0.7456$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.