Answer
$22 \ sq. \ unit$
Work Step by Step
The interval $[a,b]$ is subdivided into $n$ intervals, and the function
$f(x)$ is a continuous function over $[a,b]$.
Here, Left Riemann sum $=\displaystyle \sum_{k=0}^{n-1}f(x_{k})\Delta x$
$=[f(x_{0})+f(x_{1})+\cdots+f(x_{n-1})]\Delta x$
where $a=x_{0} < x_{1} < \cdots < x_{n}=b$ are the endpoints of the subdivisions and $\displaystyle \Delta x=\frac{b-a}{n}$
Here, we have $ [a,b]=[1,9]$ and $ n=4$
$\displaystyle \Delta x=\frac{b-a}{n}=\frac{9-1}{4}=2$
Now,
$\text{Left Riemann sum}=(0+4+4+3) \times (2)$
This gives: $Area=22 \ sq. \ unit$