Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.3 - The Definite Integral: Numerical and graphical Viewpoints - Exercises - Page 986: 10

Answer

$\approx 25$

Work Step by Step

The interval [a,b] is subdivided into n intervals, f is a continuous function over [a,b], Left Riemann sum $=\displaystyle \sum_{k=0}^{n-1}f(x_{k})\Delta x$ $=[f(x_{0})+f(x_{1})+\cdots+f(x_{n-1})]\Delta x$, where $a=x_{0} < x_{1} < \cdots < x_{n}=b$ are the endpoints of the subdivisions, and $\displaystyle \Delta x=\frac{b-a}{n}$. ----------------- $f(x)=e^{-x^{2}},\ \ [a,b]=[0,100],\ \ n=4$ $\displaystyle \Delta x=\frac{b-a}{n}=\frac{100-0}{4}=25$ $\left[\begin{array}{llllll} k & 0 & 1 & 2 & 3 & 4\\ x_{k} & 0 & 25 & 50 & 75 & 100\\ f(x_{k}) & 1 & e^{-625} & e^{-2500} & e^{-5625} & ... \end{array}\right]$ Left Riemann sum $=$ $=(1+e^{-625}+e^{-2500}+e^{-5625})\cdot 25$ $\approx$25.0000000003 $\approx 25$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.