Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 970: 4

Answer

$ -\displaystyle \frac{1}{4x+10}+C$

Work Step by Step

Shortcut: $\displaystyle \int(ax+b)^{n}dx=\frac{1}{a}\cdot\frac{(ax+b)^{n+1}}{n+1}+C$ ---------------- $a=2, b= 5, n=-2$ $\displaystyle \int(2x+5)^{3}dx=\frac{1}{2}\cdot\frac{(2x+5)^{-2+1}}{-2+1}+C$ $=\displaystyle \frac{(2x+5)^{-1}}{-2}+C$ $=-\displaystyle \frac{1}{4x+10}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.