Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 970: 2

Answer

$ -\displaystyle \frac{1}{4x+10}+C$

Work Step by Step

see Substitution RuIe, p.962: 1. Write $u$ a{\it s} a function of x. 2. Take the derivative $du/dx$ and solve for the quantity $dx$ in terms of $du$. 3. Use the expression you obtain in step 2 to substitute for $dx$ in the given integral and substitute $u$ for its defining expression. ---------------- (1) Given $\quad u=2x+5,$ (2)$ \displaystyle \quad du=2dx\ \ \Rightarrow\ \ dx=\frac{du}{2}$ $(3)$ $\displaystyle \int(2x+5)^{-2}dx=\int u^{-2}\cdot\frac{du}{2}$= ... constant multiple ... $=\displaystyle \frac{1}{2}\int u^{-2}du$= ... power rule ... $=\displaystyle \frac{1}{2}\cdot\frac{u^{-1}}{-1}+C$ ... bring x back ... $=-\displaystyle \frac{(2x+5)^{-1}}{2}+C$ $= -\displaystyle \frac{1}{2(2x+5)}+C$ $=-\displaystyle \frac{1}{4x+10}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.