Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 12 - Section 12.1 - Maxima and Minima - Exercises - Page 877: 22

Answer

$$\eqalign{ & \left( { - 1,5} \right),{\text{ Relative maximum}} \cr & \left( {\frac{1}{2}, - \frac{1}{{16}}} \right){\text{, Absolute minimum}} \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = 3{x^4} - 2{x^3}{\text{ with domain }}\left[ { - 1, + \infty } \right) \cr & {\text{Differentiate}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {3{x^4} - 2{x^3}} \right] \cr & f'\left( x \right) = 12{x^3} - 6{x^2} \cr & {\text{Find the stationary points}}{\text{, set }}f'\left( x \right) = 0 \cr & 12{x^3} - 6{x^2} = 0 \cr & 6{x^2}\left( {2x - 1} \right) = 0 \cr & x = 0,{\text{ }}x = \frac{1}{2} \cr & {\text{There are no singular points}}{\text{, the derivative is defined for every }}x \cr & {\text{The domain of the function is }}\left[ { - 1, + \infty } \right) \cr & {\text{The endpoint is: }}x = - 1 \cr & f\left( { - 1} \right) = 3{\left( { - 1} \right)^4} - 2{\left( { - 1} \right)^3} = 5,{\text{ }}\left( { - 1,5} \right),{\text{ }}\left( {{\text{endpoint}}} \right) \cr & f\left( 0 \right) = 3{\left( 0 \right)^4} - 2{\left( 0 \right)^3} = 0,{\text{ }}\left( {0,0} \right){\text{, }}\left( {{\text{stationary point}}} \right) \cr & f\left( {\frac{1}{2}} \right) = 3{\left( {\frac{1}{2}} \right)^4} - 2{\left( {\frac{1}{2}} \right)^3} = - \frac{1}{{16}},{\text{ }}\left( {\frac{1}{2}, - \frac{1}{{16}}} \right){\text{, }}\left( {{\text{stationary point}}} \right) \cr & {\text{Thus}},{\text{ we have found the following extrema:}} \cr & \left( { - 1,5} \right),{\text{ Relative maximum}} \cr & \left( {\frac{1}{2}, - \frac{1}{{16}}} \right){\text{, Absolute minimum}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.