Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 12 - Section 12.1 - Maxima and Minima - Exercises - Page 877: 19

Answer

$$\eqalign{ & \left( { - 2, - 4} \right),{\text{ Absolute minimum }} \cr & \left( {0,0} \right),{\text{ Relative minimum }} \cr & \left( { - 1,1} \right),{\text{ Relative maximum }} \cr} $$

Work Step by Step

$$\eqalign{ & h\left( t \right) = 2{t^3} + 3{t^2}{\text{ with domain }}\left[ { - 2, + \infty } \right) \cr & {\text{Differentiate}} \cr & h'\left( t \right) = \frac{d}{{dt}}\left[ {2{t^3} + 3{t^2}} \right] \cr & h'\left( t \right) = 6{t^2} + 6t \cr & {\text{Find the stationary points}}{\text{, set }}h'\left( t \right) = 0 \cr & h'\left( t \right) = 6{t^2} + 6t \cr & 6{t^2} + 6t = 0 \cr & 6t\left( {t + 1} \right) = 0 \cr & t = 0,{\text{ }}t = - 1 \cr & {\text{There are no singular points}}{\text{, the derivative is defined for every }}t \cr & {\text{The domain of the function is }}\left[ { - 2, + \infty } \right) \cr & {\text{The endpoint is: }}t = - 2 \cr & h\left( { - 2} \right) = 2{\left( { - 2} \right)^3} + 3{\left( { - 2} \right)^2} = - 4,{\text{ }}\left( { - 2, - 4} \right),{\text{ }}\left( {{\text{endpoint}}} \right) \cr & h\left( 0 \right) = 2{\left( 0 \right)^3} + 3{\left( 0 \right)^2} = 0,{\text{ }}\left( {0,0} \right){\text{, }}\left( {{\text{stationary point}}} \right) \cr & h\left( { - 1} \right) = 2{\left( { - 1} \right)^3} + 3{\left( { - 1} \right)^2} = ,{\text{ }}\left( { - 1,1} \right){\text{, }}\left( {{\text{stationary point}}} \right) \cr & {\text{Thus}},{\text{ we have found the following extrema:}} \cr & \left( { - 2, - 4} \right),{\text{ Absolute minimum }}\left( {{\text{endpoint}}} \right) \cr & \left( {0,0} \right),{\text{ Relative minimum }}\left( {{\text{Stationary point}}} \right) \cr & \left( { - 1,1} \right),{\text{ Relative maximum }}\left( {{\text{Stationary point}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.