Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 12 - Section 12.1 - Maxima and Minima - Exercises - Page 877: 18

Answer

$$\eqalign{ & \left( { - 1,5} \right),{\text{ Absolute maximum }} \cr & \left( {1, - 5} \right),{\text{ Absolute minimum}} \cr} $$

Work Step by Step

$$\eqalign{ & f\left( t \right) = - 2{t^3} - 3t{\text{ with domain }}\left[ { - 1,1} \right] \cr & {\text{Differentiate}} \cr & f'\left( t \right) = \frac{d}{{dt}}\left[ { - 2{t^3} - 3t} \right] \cr & f'\left( t \right) = - 6{t^2} - 3 \cr & {\text{Find the stationary points}}{\text{, set }}f'\left( t \right) = 0 \cr & f'\left( t \right) = - 6{t^2} - 3 \cr & - 6{t^2} - 3 = 0 \cr & - 6{t^2} = 3 \cr & {\text{No real solutions}}{\text{, there are no stationary points}} \cr & {\text{There are no singular points}}{\text{, the derivative is defined for every }}t \cr & {\text{The domain of the function is }}\left[ { - 1,1} \right],{\text{ }} \cr & {\text{The endpoints are: }}t = - 1,{\text{ and }}t = 1 \cr & f\left( { - 1} \right) = - 2{\left( { - 1} \right)^3} - 3\left( { - 1} \right) = 5,{\text{ }}\left( { - 1,5} \right),{\text{ }}\left( {{\text{endpoint}}} \right) \cr & f\left( 1 \right) = - 2{\left( 1 \right)^3} - 3\left( 1 \right) = - 5,{\text{ }}\left( {1, - 5} \right){\text{, }}\left( {{\text{endpoint}}} \right) \cr & {\text{Thus}},{\text{ we have found the following extrema:}} \cr & \left( { - 1,5} \right),{\text{ Absolute maximum }}\left( {{\text{endpoint}}} \right) \cr & \left( {1, - 5} \right),{\text{ Absolute minimum }}\left( {{\text{endpoint}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.