Answer
$f'(a)=\lim \limits_{h \to 0}3$, which equals to $3$.
$f'(-1)=3$
Work Step by Step
The algebraic derivative of a function can be described as:
$f'(a)=\lim \limits_{h \to 0}\frac{f(a+h)-f(a)}{h}$
Here, $f(a)=3a-4$
By substituting, we get:
$\frac{3(a+h)-4-(3a-4)}{h}=\frac{3a+3h-4-3a+4}{h}=\frac{3h}{h}=3$
$f'(a)=\lim \limits_{h \to 0}3$, which equals to $3$.
$f'(-1)=3$