Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 9 - Multiveriable Calculus - Chapter Review - Review Exercises - Page 518: 30


$${f_x}\left( {x,y} \right) = 20{x^3}{y^3} - 30{x^4}y{\text{ and }}{f_y}\left( {x,y} \right) = 15{x^4}{y^2} - 6{x^5}$$

Work Step by Step

$$\eqalign{ & f\left( {x,y} \right) = 5{x^4}{y^3} - 6{x^5}y \cr & {\text{find }}{f_x}\left( {x,y} \right){\text{ and }}{f_y}\left( {x,y} \right) \cr & \cr & {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {5{x^4}{y^3} - 6{x^5}y} \right] \cr & {\text{treat y as a constant and }}x{\text{ as a variable}}{\text{. then}} \cr & {f_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ {5{x^4}{y^3}} \right] - \frac{\partial }{{\partial x}}\left[ {6{x^5}y} \right] \cr & {f_x}\left( {x,y} \right) = 5{y^3}\frac{\partial }{{\partial x}}\left[ {{x^4}} \right] - 6y\frac{\partial }{{\partial x}}\left[ {{x^5}} \right] \cr & {f_x}\left( {x,y} \right) = 5{y^3}\left( {4{x^3}} \right) - 6y\left( {5{x^4}} \right) \cr & {f_x}\left( {x,y} \right) = 20{x^3}{y^3} - 30{x^4}y \cr & \cr & {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {5{x^4}{y^3} - 6{x^5}y} \right] \cr & {\text{treat x as a constant and y as a variable}}{\text{. then}} \cr & {f_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ {5{x^4}{y^3}} \right] - \frac{\partial }{{\partial y}}\left[ {6{x^5}y} \right] \cr & {f_y}\left( {x,y} \right) = 5{x^4}\frac{\partial }{{\partial y}}\left[ {{y^3}} \right] - 6{x^5}\frac{\partial }{{\partial y}}\left[ y \right] \cr & {f_y}\left( {x,y} \right) = 5{x^4}\left( {3{y^2}} \right) - 6{x^5}\left( 1 \right) \cr & {f_y}\left( {x,y} \right) = 15{x^4}{y^2} - 6{x^5} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.