Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.1 Increasing and Decreasing Functions - 5.1 Exercises - Page 261: 46

Answer

$$ C(x)=x^{3}-2x^{2}+8x+50 $$ (a) The function $C(x)$ is decreasing nowhere . (b) The function $C(x)$ is increasing on interval $(-\infty, \infty)$.

Work Step by Step

$$ C(x)=x^{3}-2x^{2}+8x+50 $$ To find the critical numbers, we first find any values of $x$ that make $C^{\prime}(x) =0 $. Now, solve the equation $C^{\prime}(x)=0 $ to get $$ \begin{aligned} C^{\prime} (x)&=3x^{2}-2(2)x+8(1)+(0)=0\\ &=3x^{2}-4x+8=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ x_{1,\:2} &=\frac{-\left(-4\right)\pm \sqrt{\left(-4\right)^2-4\cdot \:3\cdot \:8}}{2\cdot \:3}\\ \Rightarrow\quad\quad\quad\quad\quad\\\ x_{1,\:2} &=\frac{4\pm \sqrt{-80}}{6} \quad\quad\quad \text {not real values} \end{aligned} $$ Therefore, there are no critical points. The function either always increases or always decreases. Now, we can use the first derivative test. Check the sign of $C^{\prime}(x)$. Test a number say $0$: $$ \begin{aligned} C^{\prime}(0) &=3(0)^{2}-4(0)+8\\ &=8\\ & \gt 0 \end{aligned} $$ we see that $C^{\prime}(x)$ is positive for all real number $x$, so $C(x)$ is increasing on $(-\infty, \infty)$. So, (a) The function $C(x)$ is decreasing nowhere . (b) The function $C(x)$ is increasing on interval $(-\infty, \infty)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.