Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 4 - Calculating the Derivative - 4.4 Derivatives of Exponential Functions - 4.4 Exercises: 5

Answer

\[{y^,} = - 32{e^{2x + 1}}\]

Work Step by Step

\[\begin{gathered} y = - 16{e^{2x + 1}} \hfill \\ Find\,\,the\,\,derivative \hfill \\ {y^,} = \,{\left( { - 16{e^{2x + 1}}} \right)^,} \hfill \\ {y^,} = \, - 16\,{\left( {{e^{2x + 1}}} \right)^,} \hfill \\ Use\,\,the\,\,formula \hfill \\ \frac{d}{{dx}}\,\,\left[ {{e^{g\,\left( x \right)}}} \right] = {e^{g\,\left( x \right)}}{g^,}\,\left( x \right) \hfill \\ Then \hfill \\ {y^,} = \, - 16\,\left( {{e^{2x + 1}}} \right)\,{\left( {2x + 1} \right)^,} \hfill \\ {y^,} = \, - 16\,\left( {{e^{2x + 1}}} \right)\,\left( 2 \right) \hfill \\ Multiplying\, \hfill \\ {y^,} = - 32{e^{2x + 1}} \hfill \\ \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.