#### Answer

\[{y^,} = \,6{e^{5x}}\]

#### Work Step by Step

\[\begin{gathered}
y = 1.2{e^{5x}} \hfill \\
Find\,\,the\,\,derivative \hfill \\
{y^,} = \,{\left( {1.2{e^{5x}}} \right)^,} \hfill \\
{y^,} = 1.2\,{\left( {{e^{5x}}} \right)^,} \hfill \\
Using\,\,\frac{d}{{dx}}\,\,\left[ {{e^{g\,\left( x \right)}}} \right] = {e^{g\,\left( x \right)}}{g^,}\,\left( x \right) \hfill \\
Then \hfill \\
{y^,} = \,1.2\,\left( {{e^{5x}}} \right)\,{\left( {5x} \right)^,} \hfill \\
{y^,} = \,1.2\,\left( {{e^{5x}}} \right)\,\left( 5 \right) \hfill \\
Multiplying\, \hfill \\
{y^,} = \,6{e^{5x}} \hfill \\
\hfill \\
\end{gathered} \]