Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 12 - Sequences and Series - 12.5 Taylor Series - 12.5 Exercises - Page 647: 29

Answer

$ 0.3461$

Work Step by Step

We are given $f(x)=e^{x^2}$ with $a_0=1$ The Taylor series for $e^x$ is $1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+...+\frac{1}{n!}x^n+...$ which converges for $x$ in $(-\infty,\infty)$; replace each $x$ with $x^2$ to get $e^{x^2}=1+x^2+\frac{1}{2!}(x^2)^2+\frac{1}{3!}(x^2)^3+\frac{1}{4!}(x^2)^4$ $=1+x^2+\frac{1}{2}x^4+\frac{1}{6}x^6+\frac{1}{24}x^8$ $\int^{\frac{1}{3}}_0 e^{x^2}dx \approx \int^{\frac{1}{3}}_0(1+x^2+\frac{1}{2}x^4+\frac{1}{6}x^6+\frac{1}{24}x^8)dx$ $=(x+\frac{x^3}{3}+\frac{x^5}{10}+\frac{x^{7}}{42}+\frac{x^{9}}{216})|^{\frac{1}{3}}_0$ $\approx 0.3461$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.