Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 12 - Sequences and Series - 12.5 Taylor Series - 12.5 Exercises - Page 647: 24

Answer

$\ln(\frac{1+x}{1-x})=2x+\frac{2x^3}{3}+\frac{2x^5}{5}+...\frac{2x^{2n+1}}{2n+1}+...$

Work Step by Step

The Taylor series for $\ln(1+x)$ is $x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...+\frac{(-1)^nx^{n+1}}{n+1}...$ So, the Taylor series for $f(x)=ln(1-x)=\ln[1+(-x)]$ is $-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}+...+\frac{x^{n+1}}{n+1}...$ Hence $\ln(1+x)-\ln(1-x)$ $=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...+\frac{(-1)^nx^{n+1}}{n+1}...-[-x-\frac{x^2}{2}-\frac{x^3}{3}-\frac{x^4}{4}+...+\frac{x^{n+1}}{n+1}...]$ $=2x+\frac{2x^3}{3}+\frac{2x^5}{5}+...\frac{2x^{2n+1}}{2n+1}+...$ We are given $\ln(\frac{1+x}{1-x})=\ln(1+x)-\ln(1-x)$ so $\ln(\frac{1+x}{1-x})=2x+\frac{2x^3}{3}+\frac{2x^5}{5}+...\frac{2x^{2n+1}}{2n+1}+...$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.