Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Section 8.2 - Area of a Surface of Revolution - 8.2 Exercises - Page 556: 28

Answer

Therefore, the surface area of the curve when it is rotated around the x-axis is $\pi(\sqrt{2} + \ln(1 + \sqrt{2}))$.

Work Step by Step

\begin{equation*} \text{Surface Area} = 2\pi\int_{a}^{b} f(x)\sqrt{1 + (f'(x))^2} , dx \end{equation*} where $f(x)$ is the function being rotated and $a$ and $b$ are the limits of integration. In this case, $f(x) = \frac{1}{e^x}$ and $f'(x) = -\frac{1}{e^x}$, so we can substitute these values into the formula and simplify: \begin{align*} \text{Surface Area} &= 2\pi\int_{0}^{\infty} \frac{1}{e^x} \sqrt{1 + \left(-\frac{1}{e^x}\right)^2} , dx \ &= 2\pi\int_{0}^{\infty} \frac{1}{e^x} \sqrt{1 + \frac{1}{e^{2x}}} , dx \end{align*} To solve this integral, we can use the substitution $u = 1 + \frac{1}{e^{2x}}$, which gives us $\frac{du}{dx} = -\frac{2}{e^{2x}}\left(1 + \frac{1}{e^{2x}}\right)^{-2}$ and $dx = -\frac{1}{2}(u-1)u^{-\frac{3}{2}} , du$. Substituting these values into the integral, we get: \begin{align*} \text{Surface Area} &= -\pi\int_{2}^{\infty} (u-1)u^{-\frac{3}{2}} , du \ &= -\pi\int_{\sqrt{2}}^{\infty} (v^2 - 1) , dv \quad \text{(substituting } v = \sqrt{u}\text{)} \ &= -\pi\left[\frac{v^3}{3} - v\right]_{\sqrt{2}}^{\infty} \ &= \pi(\sqrt{2} + \ln(1 + \sqrt{2})) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.