Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Section 8.2 - Area of a Surface of Revolution - 8.2 Exercises - Page 556: 17

Answer

The area of the surface obtained by rotating the curve about the y-axis is: $$ \begin{aligned} S&=\int 2 \pi x d s \\ &=\int^{\frac{a}{2}}_{0} 2 \pi (\sqrt{a^{2}-y^{2}} ) \sqrt {\left(\frac{a^{2}}{{a^{2}-y^{2}}}\right)} dy \\ &= \pi a^{2} \end{aligned} $$

Work Step by Step

$$ x= \sqrt{a^{2}-y^{2}}, \quad \quad 0 \leq y \leq \frac{a}{2} $$ $\Rightarrow$ $$ \frac{dx}{dy}= \frac{-y}{\sqrt{a^{2}-y^{2}}} $$ $\Rightarrow$ $$ \begin{aligned} ds &= \sqrt {1+\left(\frac{dx}{dy}\right)^{2}} dy \\ &=\sqrt {1+\left(\frac{-y}{\sqrt{a^{2}-y^{2}}}\right)^{2}} dy\\ &=\sqrt {1+\left(\frac{y^{2}}{{a^{2}-y^{2}}}\right)} dy \\ &=\sqrt {\left(\frac{a^{2}}{{a^{2}-y^{2}}}\right)} dy \end{aligned} $$ So, the area of the surface obtained by rotating the curve about the y-axis is: $$ \begin{aligned} S&=\int 2 \pi x d s \\ &=\int^{\frac{a}{2}}_{0} 2 \pi (\sqrt{a^{2}-y^{2}} ) \sqrt {\left(\frac{a^{2}}{{a^{2}-y^{2}}}\right)} dy \\ &=\int^{\frac{a}{2}}_{0} 2 \pi (\sqrt{a^{2}-y^{2}} )\frac{a}{ \sqrt {a^{2}-y^{2}}} dy \\ &=2 \pi \int^{\frac{a}{2}}_{0} a dy\\ &=2 \pi a\left[y\right]_{0}^{\frac{a}{2}}\\ &=2 \pi a\left[ \frac{a}{2}\right]\\ &= \pi a^{2} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.