Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 8 - Section 8.2 - Area of a Surface of Revolution - 8.2 Exercises - Page 556: 18

Answer

The area of the surface obtained by rotating the curve about the y-axis $$ \begin{aligned} S&=\int 2 \pi x d s \\ &=\int_{1}^{2} 2 \pi (x)(\frac{x}{2}+\frac{1}{2x})dx\\ &= \frac{10}{3}\pi \end{aligned} $$

Work Step by Step

$$ y= \frac{1}{4}x^{2}-\frac{1}{2}\ln x, \quad \quad 1 \leq x \leq 2 $$ $\Rightarrow$ $$ y^{\prime} =\frac{dy}{dx}= \frac{x}{2}-\frac{1}{2x} $$ $\Rightarrow$ $$ \begin{aligned} ds &= \sqrt {1+\left(y^{\prime}\right)^{2}} dx \\ &=\sqrt{1+\left(\frac{x}{2}-\frac{1}{2x} \right)^{2}} dx\\ &=\sqrt{1+\frac{x^{2}}{4}-\frac{1}{2}+\frac{1}{4x^{2}}}dx \\ &=\sqrt{\frac{x^{2}}{4}+\frac{1}{2}+\frac{1}{4x^{2}}}dx \\ &=\sqrt{(\frac{x}{2}+\frac{1}{2x})^{2}} dx\\ &= (\frac{x}{2}+\frac{1}{2x})dx \end{aligned} $$ So, the area of the surface obtained by rotating the curve about the y-axis $$ \begin{aligned} S&=\int 2 \pi x d s \\ &=\int_{1}^{2} 2 \pi (x)(\frac{x}{2}+\frac{1}{2x})dx\\ &=2 \pi \int_{1}^{2} x(\frac{x}{2}+\frac{1}{2x})dx \\ &= \pi \int_{1}^{2} (x^{2}+1)dx \\ &= \pi\left[ \frac{1}{3}x^{3}+x\right]_{1 }^{2}\\ &= \pi\left[ (\frac{8}{3}+2)-(\frac{1}{3}+1)\right]\\ &= \frac{10}{3}\pi \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.