Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.4 - Integration of Rational Functions by Partial Fractions. - 7.4 Exercises - Page 501: 42


$$\int_{0}^{1} \frac{1}{1+\sqrt[3]{x}} d x=-\frac{3}{2}+3 \ln (2) $$

Work Step by Step

Given $$\int_{0}^{1} \frac{1}{1+\sqrt[3]{x}} d x$$ So: let $u^3=x\rightarrow 3u^2du$. With this substitution, the integral can be computed as follows: \begin{aligned} I&=\int_{0}^{1} \frac{1}{1+\sqrt[3]{x}} d x\\ &=\int_{0}^{1} \frac{3 u^{2}}{1+u} \mathrm{d} u \\ &=3\int_{0}^{1} \frac{ u^{2}-1+1}{1+u} \mathrm{d} u \\ &=3 \int_{0}^{1} \frac{u^{2}-1}{1+u}+\frac{1}{1+u} \mathrm{d} u \\ &=3 \int_{0}^{1} \frac{(u -1)(u+1)}{1+u}+\frac{1}{1+u} \mathrm{d} u \\&=3 \int_{0}^{1} u-1+\frac{1}{1+u} \mathrm{d} u \\ &=3\left[\frac{u^{2}}{2}-u+\ln (u+1)\right]_{0}^{1} \\ &=3\left(\frac{1}{2}-1+\ln (2)\right) \\ &=-\frac{3}{2}+3 \ln (2) \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.