Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.4 - Integration of Rational Functions by Partial Fractions. - 7.4 Exercises - Page 501: 29

Answer

$\displaystyle \frac{1}{2}\ln\left(x^{2}+2x+5\right)+\frac{3}{2}\tan^{-1}\left(\frac{x+1}{2}\right)+C$

Work Step by Step

$x^{2}+2x+5$ can not be factored ($b^{2}-4ac$ is negative), so we can't use the partial fraction method. We transform the numerator: $x+4=\displaystyle \frac{1}{2}(2x+2)+3$ $\displaystyle \frac{x+4}{x^{2}+2x+5}=\frac{1}{2}\cdot\frac{2x+2}{x^{2}+2x+5}+\frac{3}{x^{2}+2x+5}$ The second numerator is transformed by completing the square $x^{2}+2x+5=x^{2}+2x+1+4=(x+1)^{2}+2^{2}$ $\displaystyle \int\frac{x+4}{x^{2}+2x+5}dx=\frac{1}{2}\int\frac{2x+2}{x^{2}+2x+5}dx+3\int\frac{dx}{(x+1)^{2}+2^{2}}$ $...\left[\int\frac{du}{u^{2}+a^{2}}=\frac{1}{a}\tan^{-1}(\frac{u}{a})\right]$ $=\displaystyle \frac{1}{2}\ln\left(x^{2}+2x+5\right)+\frac{3}{2}\tan^{-1}\left(\frac{x+1}{2}\right)+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.