Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.3 - Trigonometric Substitution - 7.3 Exercises - Page 491: 31

Answer

$a)\int\frac{dx}{\sqrt{x^2+a^2}} = \ln(x+\sqrt{x^2+a^2})+ C $ $b)\int\frac{dx}{\sqrt{x^2+a^2}} = arcsinh \left ( \frac{x}{a} \right )+ C $

Work Step by Step

$ a) $ $I=\int\frac{dx}{\sqrt{x^2+a^2}}$ $\begin{Bmatrix} x=a \tan\theta & x^2=a^2 \tan^2\theta \\ \frac{dx}{d\theta}=a\sec^2\theta & dx=a\sec^2\theta {d\theta} \end{Bmatrix}$ Integration by substitution $=\int\frac{a\sec^2\theta {d\theta}}{\sqrt{a^2 \tan^2\theta+a^2}}$ $=\int\frac{a\sec^2\theta {d\theta}}{\sqrt{a^2( \tan^2\theta+1)}}$ $=\int\frac{a\sec^2\theta {d\theta}}{\sqrt{a^2 \sec^2 }}$ $=\int\frac{a\sec^2\theta {d\theta}}{a\sec }$ $=\int{\sec {d\theta}}$ $=\ln(\sec\theta+\tan\theta)+C1$ $\sec\theta=\frac{{\sqrt{x^2+a^2}}}{a}$ $\tan\theta=\frac{x}{a}$ $=\ln(\frac{{\sqrt{x^2+a^2}}}{a}+\frac{x}{a})+ C1$ $=\ln({\sqrt{x^2+a^2}}+{x})-\ln(a)+ C1$ $C=-\ln(a)+C1$ $I=\ln({\sqrt{x^2+a^2}}+{x})+ C1$ $ b) $ $I=\int\frac{dx}{\sqrt{x^2+a^2}}$ $\begin{Bmatrix} x=a \sinh t & x^2=a^2 \sinh^2t \\ \frac{dx}{dt}=a\cosh t & dx=a\cosh t {dt} \end{Bmatrix}$ $=\int\frac{a\cosh t {dt}}{\sqrt{a^2 \sinh^2t+a^2}}$ $=\int\frac{a\cosh t {dt}}{\sqrt{a^2( sinh^2t+1)}}$ $=\int\frac{a\cosh t {dt}}{\sqrt{a^2 \cosh^2 }}$ $=\int\frac{a\cosh{dt}}{a\cosh }$ $=\int{1{dt}}$ $=t+C$ $t=arcsinh \left ( \frac{x}{a} \right )$ $=arcsinh \left ( \frac{x}{a} \right )+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.