Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.3 - Trigonometric Substitution - 7.3 Exercises - Page 492: 32

Answer

$a)=\int\frac{x^2dx}{(x^2+a^2)^\frac{3}{2}} = \ln(\sqrt{x^2+a^2}+x)-\frac{x}{\sqrt{x^2+a^2}} + C$ $b)=\int\frac{x^2dx}{(x^2+a^2)^\frac{3}{2}}= arcsinh \left ( \frac{x}{a} \right )-\frac{x}{\sqrt{x^2+a^2}}+C$

Work Step by Step

$a)$ Integration by substitution $I=\int\frac{x^2dx}{(x^2+a^2)^\frac{3}{2}}$ $\begin{Bmatrix} x=a \tan\theta & x^2=a^2 \tan^2\theta \\ \frac{dx}{d\theta}=a\sec^2\theta & dx=a\sec^2\theta {d\theta} \end{Bmatrix}$ $=\int\frac{a^2 \tan^2\theta a\sec^2\theta }{(a^2 \tan^2\theta+a^2)^\frac{3}{2}}{d\theta}$ $=\int\frac{a^3 \tan^2\theta \sec^2\theta }{(a^2 (\tan^2\theta+1))^\frac{3}{2}}{d\theta}$ $=\int\frac{a^3 \tan^2\theta \sec^2\theta }{(a^2 \sec^2\theta)^\frac{3}{2}}{d\theta}$ $=\int\frac{a^3 \tan^2\theta \sec^2\theta }{a^3 \sec^3\theta}{d\theta}$ $=\int\frac{ \tan^2\theta }{\sec\theta}{d\theta}$ $=\int\frac{ (\sec^2\theta-1) }{\sec\theta}{d\theta}$ $=\int\frac{ \sec^2\theta }{\sec\theta}{d\theta}-\int\frac{ 1}{\sec\theta}{d\theta}$ $=\int{\sec\theta}{d\theta}-\int{\cos\theta}{d\theta}$ $=\ln(\sec\theta+\tan\theta)-\sin\theta +C_1$ $\sec\theta=\frac{{\sqrt{x^2+a^2}}}{a}$ $\tan\theta=\frac{x}{a}$ $\sin\theta =\frac{x}{\sqrt{x^2+a^2}}$ $=\ln(\frac{{\sqrt{x^2+a^2}}}{a}+\frac{x}{a})-\frac{x}{\sqrt{x^2+a^2}}-\ln(a) + C_1 $ $=\ln({\sqrt{x^2+a^2}}+{x})-\ln(a)-\frac{x}{\sqrt{x^2+a^2}}+ C_1$ $C=C_1-\ln(a)$ $I=\ln(\sqrt{x^2+a^2}+x)-\frac{x}{\sqrt{x^2+a^2}} + C $ $b)$ By the hyperbolic substitution x=a sinh t $I=\int\frac{x^2dx}{(x^2+a^2)^\frac{3}{2}}$ $\begin{Bmatrix} x=a \sinh t & x^2=a^2 \sinh^2t \\ \frac{dx}{dt}=a\cosh t & dx=a\cosh t {dt} \end{Bmatrix}$ $=\int\frac{a^2 \sinh^2t {a}\cosh t }{(a^2 \sinh^2t+a^2)^\frac{3}{2}}{dt}$ $=\int\frac{a^3 \sinh^2t \cosh t }{(a^2 ( \sinh^2t+1))^\frac{3}{2}}{dt}$ $=\int\frac{a^3 \sinh^2t \cosh t }{(a^2 \cosh^2t)^\frac{3}{2}}{dt}$ $=\int\frac{a^3 \sinh^2t \cosh t}{a^3 \cosh^3t}{dt}$ $=\int\frac{ \sinh^2t }{\cosh^2t}{dt}$ $=\int\tanh^2t{dt}$ $=\int1-\sec h^2t{dt}$ $=\int1{dt}-\int\sec h^2t{dt}$ $=t-\tanh t+C$ $\sin\theta=\frac{x}{a}$ $\tan\theta =\frac{x}{\sqrt{x^2+a^2}}$ $t=arcsinh \left ( \frac{x}{a} \right )$ $I=arcsinh \left ( \frac{x}{a} \right )-\frac{x}{\sqrt{x^2+a^2}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.