Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Review - Exercises - Page 538: 66

Answer

$17.402367$

Work Step by Step

$\int_{1}^{4} \frac{e^x}{x}\, dx$ Using Simpson's Rule with $n=6$ sub-intervals. $ a=1 , b=4, n=6 $ $h=\frac{b-a}{n} =\frac{4-1}{6} = 0.5$ Nodes: $x_{0}=1, x_{1}=1.5, x_{2}=2, x_{3}=2.5,x_{4}=3,x_{5}=3.5,x_{6}=4$ Since: $f(x)=\frac{e^x}{x}$ Apply Simpson's Rule: $S_{n}= \frac{h}{3}[f(x_{0})+4\sum_{\text {odd,} i} f(x_{i})+ 2 \sum_{\text {even,} i\ne0,n}f(x_{i}) + f(x_{n}) $ Odd indices : $i = 1,3,5 $ $4(f(x_{1})+f(x_{3})+f(x_{5}))$ $=4(\frac{e^{1.5}}{1.5}+\frac{e^{2.5}}{2.5}+\frac{x^{3.5}}{3.5})$ $=4(16.816721)$ $=67.266884$ Even Indices (where $i\ne0,n$) : $i=2,4$ $2(f(x_{2}) + f(x_{4}))$ $=2(\frac{e^2}{2} + \frac{e^3}{3}) $ $= 2(10.389707)$ $=20.779414$ End Points: $i=0,6$ $f(x_{0})+f(x_{6})= \frac{e^1}{1}+\frac{e^4}{4} = 16.367904$ Combined: $S_{6} \approx \frac{0.5}{3}(16.367904+ 67.266884+20.779414)$ $S_{6}\approx17.402367$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.