Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises: 31

Answer

$$\int^{1}_0x(\sqrt[3]x+\sqrt[4]x)dx=\frac{55}{63}$$

Work Step by Step

$$A=\int^{1}_0x(\sqrt[3]x+\sqrt[4]x)dx$$ $$A=\int^{1}_0x(x^{1/3}+x^{1/4})dx$$ $$A=\int^{1}_0(x^{4/3}+x^{5/4})dx$$According to Table 1, we have $$\int x^n dx=\frac{x^{n+1}}{n+1}+C$$ Therefore, $$A=(\frac{x^{7/3}}{\frac{7}{3}}+\frac{x^{9/4}}{\frac{9}{4}})\Bigg]^1_0$$ $$A=(\frac{3x^{7/3}}{7}+\frac{4x^{9/4}}{9})\Bigg]^1_0$$ $$A=(\frac{3\times1^{7/3}}{7}+\frac{4\times1^{9/4}}{9})-(\frac{3\times0^{7/3}}{7}+\frac{4\times0^{9/4}}{9})$$ $$A=\frac{3}{7}+\frac{4}{9}$$ $$A=\frac{55}{63}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.