Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 264: 31


$f'(x)=\frac{\sec^2 {h}{\sqrt{x}}}{2\sqrt{x}}$

Work Step by Step

$f'(x)=\frac{d}{dx}\tanh {\sqrt{x}}$ Using the chain rule: $f'(x)=\frac{d\tanh{\sqrt{x}}}{d(\sqrt{x})} \times\frac{d(\sqrt{x})}{dx}$ $\DeclareMathOperator{\sech}{sech}$ $=(\sech)^2 {\sqrt{x}} \times\frac{1}{2\sqrt{x}}$ $=\frac{(\sech)^2{\sqrt{x}}}{2\sqrt{x}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.