Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 3 - Review - Exercises - Page 267: 36



Work Step by Step

$y=\sqrt{t\ln(t^{4})}$ Rewrite the square root using a rational exponent: $y=[t\ln(t^{4})]^{1/2}$ Start the differentiation process by using the chain rule: $y'=\dfrac{1}{2}[t\ln(t^{4})]^{-1/2}[t\ln(t^{4})]'=...$ Change the sign of the negative exponent by changing its corresponding factor to the denominator: $...=\dfrac{[t\ln(t^{4})]'}{2[t\ln(t^{4})]^{1/2}}=...$ Rewrite the rational exponent in the denominator as a square root: $...=\dfrac{[t\ln(t^{4})]'}{2\sqrt{t\ln(t^{4})}}$ Use the product rule to evaluate the derivative indicated in the numerator: $...=\dfrac{t[\ln(t^{4})]'+(t)'\ln(t^{4})}{2\sqrt{t\ln(t^{4})}}=...$ Use the chain rule one last time to evaluate the derivatives indicated in the numerator and simplify: $...=\dfrac{t\Big[\dfrac{(t^{4})'}{t^{4}}\Big]+\ln(t^{4})}{2\sqrt{t\ln(t^{4})}}=\dfrac{t\Big(\dfrac{4t^{3}}{t^{4}}\Big)+\ln(t^{4})}{2\sqrt{t\ln(t^{4})}}=\dfrac{4+\ln(t^{4})}{2\sqrt{t\ln(t^{4})}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.