Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.9 - The Divergence Theorem - 16.9 Exercise - Page 1146: 28

Answer

$\iint_S D_n f dS=\iiint_E \nabla^2 f dV $

Work Step by Step

The Divergence Theorem states that $\iint_S \overrightarrow{F}\cdot d\overrightarrow{S}=\iiint_Ediv \overrightarrow{F}dV $ Here, $S$ is a closed surface and $E$ is the region inside that surface. $div F=\dfrac{\partial a}{\partial x}+\dfrac{\partial b}{\partial y}+\dfrac{\partial c}{\partial z}$ Since, we have $D_nf=(\nabla f) \cdot n$ This implies that $\iint_S D_n f dS=\iiint_S (\nabla f) \cdot dS=\iint_S (\nabla F) \cdot dS $ Also, $\iint_S (\nabla f) \cdot dS=\iiint_E div (\nabla F) dV $ or, $\iint_S (\nabla f) \cdot dS=\iiint_E div (\nabla F) dV=\iiint_E \nabla \cdot (\nabla F) dV=\iiint_E \nabla^2 f dV $ Hence, it has been verified that $\iint_S D_n f dS=\iiint_E \nabla^2 f dV $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.