Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.9 - The Divergence Theorem - 16.9 Exercise - Page 1146: 15

Answer

$\dfrac{341\sqrt 2}{60}+\dfrac{81}{20} \arcsin (\dfrac{\sqrt 3}{3})$

Work Step by Step

$div F=\dfrac{\partial a}{\partial x}+\dfrac{\partial b}{\partial y}+\dfrac{\partial c}{\partial z}=\dfrac{\partial e^y \tan z}{\partial x}+\dfrac{\partial y \sqrt{3-x^2}}{\partial y}+\dfrac{\partial (x \sin y)}{\partial z}=0+\sqrt {3-x^2}+0=\sqrt{3-x^2}$ Now, we have $\iiint_E div F dV=\iiint_E \sqrt{3-x^2} dV$ $=\int_{-1}^{1}\int_{-1}^{1} \int_{0}^{2-x^4-y^4} \sqrt{3-x^2} dz dxdy$ $=\int_{-1}^{1}\int_{-1}^{1} (2-x^4-y^4) \sqrt{3-x^2} dxdy$ $=\int_{0}^{2 \pi}\int_0^{\pi} \int_{0}^{R} 5\rho^2 \sin \phi d \rho d\phi d \theta$ By using a calculating tool, we have $\iint_S F \cdot dS=\dfrac{341\sqrt 2}{60}+\dfrac{81}{20} \arcsin (\dfrac{\sqrt 3}{3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.