Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.9 - The Divergence Theorem - 16.9 Exercise - Page 1146: 17

Answer

$\dfrac{13 \pi}{20}$

Work Step by Step

Flux through $S_2$ $=\int_{0}^{\pi/2}\int_0^{2 \pi} \int_{0}^{1} \rho^2 \times (\rho^2 \sin \phi) \times d \rho d\phi d \theta$ or, $=\int_{0}^{\pi/2}\int_0^{2 \pi} \int_{0}^{1} \rho^4 \sin \phi \times d \rho d\phi d \theta$ or, $=\int_{0}^{\pi/2} \sin \phi d\pi \times \int_0^{2 \pi} d \theta \times \int_0^1 \rho^4 d\rho$ or, $=\dfrac{2\pi}{5}$ Flux through $S_1$ $=-\int_{0}^{\pi/2}\int_{0}^{1} r^2 \sin^2 \theta r dr d \theta$ or, $=-\int_{0}^{\pi/2}\sin^2 \theta d\theta \times [\int_{0}^{1} r^3 dr]$ or, $=(-0.5)\times [\theta-\dfrac{\sin 2\theta}{2}]_0^{2 \pi}$ or, $=-\dfrac{\pi}{4}$ Hence, the flux through S is given by$=\dfrac{2\pi}{5}-\dfrac{\pi}{4}=\dfrac{13 \pi}{20}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.