Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.2 - Line Integrals - 16.2 Exercise - Page 1086: 52

Answer

$B=\dfrac{\mu_{0} I}{2 \pi r}$

Work Step by Step

Suppose $r(t)=r \cos t(t) i+ r\sin (t) j$ Consider $\int_C B \cdot dr =\int_a^b B r'(t) dt$ or, $\int_C B \cdot dr =\int_0^{2 \pi} (-B \sin (t) i+ B \cos (t) j) (-r \sin (t) i+ r\cos (t) j) dt$ This implies that $\int_C B \cdot dr = \int_0^{2 \pi} Br ( \sin^2 t+ \cos^2 t) dt= (2 \pi r) B$ Apply Ampere's Law: $\int_C B \cdot dr = 2 \pi r B= \mu_{0} I$ Hence, we have $B=\dfrac{\mu_{0} I}{2 \pi r}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.