Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.2 - Line Integrals - 16.2 Exercise - Page 1086: 38

Answer

$I_x= 4 \sqrt{13} k \pi (1+6 \pi^2)$; $I_y= 4 \sqrt{13} k \pi (1+6 \pi^2)$ and $ I_z=8 \sqrt{13} k \pi$

Work Step by Step

$I_x=\int_{0}^{2\pi} (4 \cos^2 t+9t^2)(k) \sqrt{13} dt=\sqrt {13} k \int_{0}^{2\pi} (4 \cos^2 t+9t^2) dt= 4 \sqrt{13} k \pi (1+6 \pi^2)$ and $I_y=\int_{0}^{2\pi} (4 \sin^2 t+9t^2)(k) \sqrt{13} dt=\sqrt{13} k \int_{0}^{2\pi} 2 (1-\cos 2t)+9t^2= 4 \sqrt{13} k \pi (1+6 \pi^2)$ Also, we have $I_z=\int_{0}^{2\pi} (4 \sin^2 t+4 \cos^2 t)(k) \sqrt{13} dt=(\sqrt {13}) k \int_{0}^{2\pi} (4) dt=(8 \sqrt{13}) k \pi$ Hence, we have $I_x= 4 \sqrt{13} k \pi (1+6 \pi^2)$; $I_y= 4 \sqrt{13} k \pi (1+6 \pi^2)$ and $ I_z=8 \sqrt{13} k \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.