Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Review - Exercises - Page 1149: 18

Answer

curl $F=-e^{-y} \cos z\hat{i}-e^{-z} \cos x\hat{j}-e^{-x} \cos y\hat{k}$ and div $F=-e^{-x} \sin y-e^{-y} \sin z-e^{-z} \sin x$

Work Step by Step

Use definition of curl $F=\nabla \times F$ Consider $F=ai+bj+ck$ That is, curl $F=(\dfrac{\partial c}{\partial x}-\dfrac{\partial b}{\partial z})\hat{i}+(\dfrac{\partial a}{\partial z}-\dfrac{\partial c}{\partial x})\hat{j}+(\dfrac{\partial b}{\partial x}-\dfrac{\partial a}{\partial y})\hat{k}$ Here, we have $F=e^{-x} \sin y\hat{i}+e^{-y} \sin z\hat{j}+e^{-z} \sin x\hat{k}$ Thus, curl $F=-e^{-y} \cos z\hat{i}-e^{-z} \cos x\hat{j}-e^{-x} \cos y\hat{k}$ Use definition of div $F=\nabla \times F$ Consider $F=ai+bj+ck$ That is, div $F=\dfrac{\partial a}{\partial x}+\dfrac{\partial b}{\partial y}+\dfrac{\partial c}{\partial z}$ Here, we have $F=e^{-x} \sin y\hat{i}+e^{-y} \sin z\hat{j}+e^{-z} \sin x\hat{k}$ Thus, div $F=\dfrac{\partial e^{-x} \sin y}{\partial x}+\dfrac{\partial e^{-y} \sin z}{\partial y}+\dfrac{\partial e^{-z} \sin x}{\partial z}=-e^{-x} \sin y-e^{-y} \sin z-e^{-z} \sin x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.