Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.8 - Triple Integrals in Cylindrical Coordinates - 15.8 Exercise - Page 1050: 35

Answer

$(0,0, \dfrac{3(2+\sqrt 2)}{16}) $

Work Step by Step

The region $E$ using the point of intersection can be expressed as follows: $E=\left\{ (\rho, \theta, \phi) | 0 \leq \rho \leq 1, 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \dfrac{\pi}{4} \right\}$ Now, $V=\iint_{E} dV=\int_0^{\pi/4} \int_0^{2 \pi} \int_0^1 \rho^2 \sin \phi d \rho d \theta d \phi =[\rho^3/3]_0^1 [-\cos\phi]_0^{\pi/4} [ \theta]{0}^{2\pi} = \dfrac{(2-\sqrt 2) \pi}{3}$ and the z-coordinate is $z=\dfrac{\pi}{8 V}$ Now, $z=\dfrac{\pi}{8 \times \dfrac{(2-\sqrt 2) \pi}{3}}=\dfrac{3}{8(2-\sqrt 2)} \times \dfrac{2+\sqrt 2}{2+\sqrt 2} = \dfrac{3(2+\sqrt 2)}{16}$ Thus, the centroid is: $(0,0, \dfrac{3(2+\sqrt 2)}{16}) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.