Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.8 - Triple Integrals in Cylindrical Coordinates - 15.8 Exercise - Page 1050: 30

Answer

$\dfrac{8\sqrt 2 \pi}{3}$

Work Step by Step

Apply the spherical coordinates system as: $x=\rho \sin \phi \cos \theta \\ y=\rho \sin \phi \sin \theta \\z=\rho \cos \phi$; So, $\rho=\sqrt {x^2+y^2+z^2} \implies \rho^2=x^2+y^2+z^2$ Since, $x^2+y^2+z^2 =4 \implies (\rho \sin \phi \cos \theta)^2+(\rho \sin \phi \sin \theta)^2 + (\rho \cos \phi)^2 =4 \implies \rho=2$ The jacobian for spherical coordinates is $\rho^2 \sin \rho$; therefore, $\iiint{E} \sqrt {x^2+y^2+z^2} dV =\iiint_{E} \rho \rho^2 \sin \rho d\rho d\theta d\phi$ Now, we will consider $I= \int_{0}^{2\pi} \int_{\pi/4}^{\pi/2} \int_{0}^{2} \rho^2 \sin \phi d\rho d\theta d\phi$ $=\int_0^{2 \pi} \int_{\pi/4}^{\pi/2} [\dfrac{\rho^3}{3}]_0^2 d\theta \\=\dfrac{8}{3} \int_0^{2 \pi} [-\cos\phi]_{\pi/4}^{\pi/2} d \theta] \\ =\dfrac{8}{3} \int_0^{2 \pi} [\dfrac{4\sqrt 2}{3} d \theta$ Hence, $I=\dfrac{8\sqrt 2 \pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.