Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 15 - Section 15.8 - Triple Integrals in Cylindrical Coordinates - 15.8 Exercise - Page 1050: 27

Answer

$(\sqrt 3 -1) \dfrac{1}{3} \pi a^3$

Work Step by Step

Apply the spherical coordinates system as: $x=\rho \sin \phi \cos \theta \\ y=\rho \sin \phi \sin \theta \\z=\rho \cos \phi$; So, $\rho=\sqrt {x^2+y^2+z^2} \implies \rho^2=x^2+y^2+z^2$ The jacobian for spherical coordinates is $\rho^2 \sin \rho$, therefore, $\iiint{E} \sqrt {x^2+y^2+z^2} dV =\iiint_{E} \rho^2 \sin \rho d\rho d\theta d\phi$ Now, we will consider $I=\int_{\pi/6}^{\pi/3} \int_{0}^{2\pi}\int_{0}^{a} \rho^2 \sin \phi d\rho d\theta d\phi$ $=\int_{\pi/6}^{\pi/3} \int_{0}^{2\pi}[\dfrac{1}{3} \rho^3 \sin \phi ]_0^a d\theta d\phi \\ = \int_{\pi/6}^{\pi/3} \int_{0}^{2\pi} \dfrac{1}{3} a^3 \sin \phi d\theta d \phi \\=\dfrac{2}{3} [-\cos\phi \pi a^3]_{\pi/6}^{\pi/3}$ Hence, $I=\dfrac{1}{3} \pi a^3-\dfrac{1}{3} \pi a^3 =(\sqrt 3 -1) \dfrac{1}{3} \pi a^3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.