Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 12 - Section 12.4 - The Cross Product - 12.4 Exercises - Page 821: 5

Answer

$-\frac{3}{2}i+\frac{7}{4}j+\frac{2}{3}k$ $a$ and $b$ are orthogonal.

Work Step by Step

$a = <\frac{1}{2}, \frac{1}{3}, \frac{1}{4}>$, $b = <1, 2, -3>$ $a \times b$ is equal to the determinant of the matrix: \begin{vmatrix} i & j & k \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ 1 & 2 & -3 \\ \end{vmatrix} This can be found with the formula $i(bz-yc)-j(az-xc)+k(ay-xb)$ given the general $3\times 3$ matrix: \begin{vmatrix} i & j & k \\ a & b & c \\ x & y & z \\ \end{vmatrix} Plugging the values into this formula gives: $i((\frac{1}{3}*(-3))-(2*\frac{1}{4}))-j((\frac{1}{2}*(-3) )-(1*\frac{1}{4}))+k((\frac{1}{2}*\frac{1}{3})-(1*\frac{1}{3}))$ Which further simplifies into the expression: $i(-1-\frac{1}{2})-j(-\frac{3}{2}-\frac{1}{4})+k(\frac{1}{6}-\frac{1}{3})$ Which can be rewritten as the vector $-\frac{3}{2}i+\frac{7}{4}j+\frac{2}{3}k$ The cross product of two vectors, by definition, results in a vector that is orthogonal to both of the input vectors. We can check that this is true using the fact that the dot product of $a$ and $b$ with $a \times b$ should both equal zero. $a \cdot (a \times b) = <\frac{1}{2}, \frac{1}{3}, \frac{1}{4}> \cdot <-\frac{3}{2}, \frac{7}{4}, \frac{2}{3}> = \frac{1}{2}*\left(-\frac{3}{2}\right) + \frac{1}{3}*\frac{7}{4} +\frac{1}{4}*\frac{2}{3} = 0$ $b \cdot (a \times b) = <1, 2, -3> \cdot <-\frac{3}{2}, \frac{7}{4}, \frac{2}{3}> = 1*\left(-\frac{3}{2}\right) + 2*\frac{7}{4} +(-3)*\frac{2}{3} = 0$ Because both of these equations equal zero, it confirms that $a \times b$ is orthogonal to both $a$ and $b$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.