Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 8 - Sequences and Infinite Series - 8.3 Infinite Series - 8.3 Exercises - Page 624: 68

Answer

$\dfrac{\pi}{4}$

Work Step by Step

Let us consider an infinite series $\Sigma_{n=k}^{n=\infty} a_n$. This series will converge to the sum $S$ when the sequence of its partial sums $\{S_n\}$ converge to $S$. That is, $S=\lim\limits_{N \to \infty} S_n$ and $S=\Sigma_{n=k}^{n=\infty} a_n$. This series will diverge when the limit does not exist and the series will diverge to infinity when the limit is infinite. Here, we have $S_n= \Sigma_{k=1}^{n} [\tan^{-1} (k+1) -\tan^{-1} k]$ or, $= [\tan^{-1} (2) -\tan^{-1} (1)]+[\tan^{-1} (3) -\tan^{-1} (2)]+........+[\tan^{-1} (n) -\tan^{-1} (n-1)]+[\tan^{-1} (n+1) -\tan^{-1} (n)]$ or, $= \tan^{-1} (n+1) -\tan^{-1} (1)$ Now, $S=\lim\limits_{n \to \infty} S_n=\lim\limits_{n \to \infty} [\tan^{-1} (n+1) -\tan^{-1} (1)]=\lim\limits_{n \to \infty} [\tan^{-1} (n+1)] -\lim\limits_{n \to \infty}\tan^{-1} (1)$ or, $S=\dfrac{\pi}{2}-\dfrac{\pi}{4}$ or, $S=\dfrac{\pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.