Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - Review Exercises - Page 593: 5

Answer

$$\frac{\pi }{4}$$

Work Step by Step

$$\eqalign{ & \int_{ - 2}^1 {\frac{3}{{{x^2} + 4x + 13}}} dx \cr & {\text{completing the square}} \cr & = \int_{ - 2}^1 {\frac{3}{{{x^2} + 4x + 4 + 9}}} dx \cr & = \int_{ - 2}^1 {\frac{3}{{\left( {{x^2} + 4x + 4} \right) + 9}}} dx \cr & = \int_{ - 2}^1 {\frac{3}{{{{\left( {x + 2} \right)}^2} + {3^2}}}} dx \cr & {\text{find the antiderivative}} \cr & = 3\left[ {\frac{1}{3}{{\tan }^{ - 1}}\left( {\frac{{x + 2}}{3}} \right)} \right]_{ - 2}^1 \cr & = \left( {{{\tan }^{ - 1}}\left( {\frac{{x + 2}}{3}} \right)} \right)_{ - 2}^1 \cr & {\text{evaluate limits}} \cr & = \left( {{{\tan }^{ - 1}}\left( {\frac{{1 + 2}}{3}} \right) - {{\tan }^{ - 1}}\left( {\frac{{ - 2 + 2}}{3}} \right)} \right) \cr & {\text{simplify}} \cr & = \left( {{{\tan }^{ - 1}}\left( 1 \right) - {{\tan }^{ - 1}}\left( 0 \right)} \right) \cr & = \frac{\pi }{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.