Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - Review Exercises - Page 593: 21

Answer

$$\frac{{{{\left( {{x^2} + 4} \right)}^{3/2}}}}{3} - \frac{{\sqrt {{x^2} + 4} }}{2} + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^3}}}{{\sqrt {{x^2} + 4} }}} dx \cr & {\text{substitute }}x = 2\tan \theta ,{\text{ }}dx = 2{\sec ^2}\theta d\theta \cr & = \int {\frac{{{x^3}}}{{\sqrt {{x^2} + 4} }}dx} = \int {\frac{{8{{\tan }^3}\theta }}{{\sqrt {4 + 4{{\tan }^2}\theta } }}} \left( {2{{\sec }^2}\theta d\theta } \right) \cr & = \int {\frac{{16{{\tan }^3}\theta {{\sec }^2}\theta }}{{2\sqrt {1 + {{\tan }^2}\theta } }}} d\theta \cr & {\text{pythagorean identity}} \cr & = \int {\frac{{8{{\tan }^3}\theta {{\sec }^2}\theta d\theta }}{{\sqrt {{{\sec }^2}\theta } }}} = 8\int {ta{n^3}\theta \sec \theta d\theta } \cr & = 8\int {\sec \theta \tan \theta {{\tan }^2}\theta d\theta } \cr & = 8\int {\sec \theta \tan \theta \left( {{{\sec }^2}\theta - 1} \right)d\theta } \cr & {\text{find the antiderivative}} \cr & = 8\left( {\frac{{{{\sec }^3}\theta }}{3} - \sec \theta } \right) + C \cr & {\text{write in terms of }}x \cr & = \left( {\frac{{8{{\left( {\sqrt {{x^2} + 4} /2} \right)}^3}}}{3} - \frac{{\sqrt {{x^2} + 4} }}{2}} \right) + C \cr & = \frac{{8{{\left( {{x^2} + 4} \right)}^{3/2}}}}{{24}} - \frac{{\sqrt {{x^2} + 4} }}{2} + C \cr & = \frac{{{{\left( {{x^2} + 4} \right)}^{3/2}}}}{3} - \frac{{\sqrt {{x^2} + 4} }}{2} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.