Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.3 Trigonometric Integrals - 7.3 Exercises - Page 530: 65

Answer

$$\frac{1}{2} + \ln \left( {\frac{{\sqrt 2 }}{2}} \right)$$

Work Step by Step

$$\eqalign{ & \int {{{\tan }^n}x} dx \cr & {\text{*Rewrite the integrand}} \cr & \int {{{\tan }^n}x} dx = \int {{{\tan }^{n - 2}}x{{\tan }^2}x} dx \cr & {\text{*Use the pythagorean identity }}{\tan ^2}x = {\sec ^2}x - 1 \cr & \int {{{\tan }^n}x} dx = \int {{{\tan }^{n - 2}}x\left( {{{\sec }^2}x - 1} \right)} dx \cr & \int {{{\tan }^n}x} dx = \int {{{\tan }^{n - 2}}x{{\sec }^2}x} dx - \int {{{\tan }^{n - 2}}x} \cr & {\text{*Integrate}} \cr & \int {{{\tan }^n}x} dx = \frac{{{{\tan }^{n - 2 + 1}}x}}{{n - 2 + 1}} - \int {{{\tan }^{n - 2}}x} \cr & \int {{{\tan }^n}x} dx = \frac{{{{\tan }^{n - 1}}x}}{{n - 1}} - \int {{{\tan }^{n - 2}}x} \cr & \cr & {\text{Evaluate }}\int_0^{\pi /4} {{{\tan }^3}x} dx \cr & \int_0^{\pi /4} {{{\tan }^3}x} dx = \left[ {\frac{{{{\tan }^{3 - 1}}x}}{{3 - 1}}} \right]_0^{\pi /4} - \int_0^{\pi /4} {\tan x} dx \cr & \int_0^{\pi /4} {{{\tan }^3}x} dx = \left[ {\frac{{{{\tan }^2}x}}{2}} \right]_0^{\pi /4} + \left[ {\ln \left| {\cos x} \right|} \right]_0^{\pi /4} \cr & \int_0^{\pi /4} {{{\tan }^3}x} dx = \left[ {\frac{{{{\tan }^2}\left( {\pi /4} \right)}}{2} - 0} \right] + \left[ {\ln \left| {\cos \frac{\pi }{4}} \right| - \ln \left| {\cos 0} \right|} \right] \cr & {\text{Simplifying}} \cr & \int_0^{\pi /4} {{{\tan }^3}x} dx = \frac{1}{2} + \ln \left( {\frac{{\sqrt 2 }}{2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.