Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.3 Trigonometric Integrals - 7.3 Exercises - Page 530: 63

Answer

$$L = \ln \left( {\sqrt 2 + 1} \right)$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {\sec x} \right),{\text{ }}0 \leqslant x \leqslant \frac{\pi }{4} \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\ln \left( {\sec x} \right)} \right] \cr & \frac{{dy}}{{dx}} = \frac{{\sec x\tan x}}{{\sec x}} \cr & \frac{{dy}}{{dx}} = \tan x \cr & {\text{Use the Arc Length Formula}} \cr & L = \int_a^b {\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} } dx \cr & L = \int_0^{\pi /4} {\sqrt {1 + {{\left( {\tan x} \right)}^2}} } dx \cr & L = \int_0^{\pi /4} {\sqrt {1 + {{\tan }^2}x} } dx \cr & L = \int_0^{\pi /4} {\sqrt {{{\sec }^2}x} } dx \cr & L = \int_0^{\pi /4} {\sec x} dx \cr & {\text{Integrate}} \cr & L = \left[ {\ln \left| {\sec x + \tan x} \right|} \right]_0^{\pi /4} \cr & L = \ln \left| {\sec \left( {\frac{\pi }{4}} \right) + \tan \left( {\frac{\pi }{4}} \right)} \right| - \ln \left| {\sec \left( 0 \right) + \tan \left( 0 \right)} \right| \cr & L = \ln \left| {\sqrt 2 + 1} \right| - \ln \left| {1 + 0} \right| \cr & L = \ln \left( {\sqrt 2 + 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.