Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.2 Integration by Parts - 7.2 Exercises - Page 521: 58

Answer

$$2$$

Work Step by Step

$$\eqalign{ & \int_0^{{\pi ^2}/4} {\sin \sqrt x } dx \cr & {\text{Let }}t = \sqrt x ,{\text{ }}{t^2} = x,{\text{ }}2tdt = dx \cr & {\text{Use the substitution}} \cr & \int {\sin \sqrt x } dx = \int {\sin t} \left( {2t} \right)dt \cr & = 2\int {t\sin t} dt \cr & {\text{Integrate by parts,}} \cr & {\text{Let }}u = t,{\text{ }}du = dt \cr & dv = \sin tdt,{\text{ }}v = - \cos t \cr & 2\int {t\sin t} dt = 2\left( { - t\cos t + \int {\cos t} dt} \right) \cr & 2\int {t\sin t} dt = - 2t\cos t + 2\int {\cos t} dt + C \cr & 2\int {t\sin t} dt = - 2t\cos t + 2\sin t + C \cr & {\text{Back - substitute }}t = \sqrt x \cr & \int {\sin \sqrt x } dx = - 2\sqrt x \cos \sqrt x + 2\sin \sqrt x + C \cr & {\text{Therefore,}} \cr & \int_0^{{\pi ^2}/4} {\sin \sqrt x } dx = \left[ { - 2\sqrt x \cos \sqrt x + 2\sin \sqrt x } \right]_0^{{\pi ^2}/4} \cr & = \left[ { - 2\sqrt {\frac{{{\pi ^2}}}{4}} \cos \sqrt {\frac{{{\pi ^2}}}{4}} + 2\sin \sqrt {\frac{{{\pi ^2}}}{4}} } \right] - \left[ {0\cos \sqrt 0 + 2\sin \sqrt 0 } \right] \cr & = \left[ { - 2\left( {\frac{\pi }{2}} \right)\cos \left( {\frac{\pi }{2}} \right) + 2\sin \left( {\frac{\pi }{2}} \right)} \right] - \left[ 0 \right] \cr & = - 2\left( {\frac{\pi }{2}} \right)\left( 0 \right) + 2\sin \left( {\frac{\pi }{2}} \right) \cr & = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.