Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 7 - Integration Techniques - 7.2 Integration by Parts - 7.2 Exercises - Page 521: 56

Answer

$$\frac{1}{2}{\sin ^2}x + C$$

Work Step by Step

$$\eqalign{ & \int {\sin x\cos x} dx \cr & {\text{Integrate by parts,}} \cr & {\text{Let }}u = \sin x,{\text{ }}du = \cos xdx, \cr & dv = \cos xdx,{\text{ }}v = \sin x \cr & \int {\sin x\cos x} dx = \left( {\sin x} \right)\left( {\sin x} \right) - \int {\sin x\left( {\cos x} \right)} dx \cr & \int {\sin x\cos x} dx = {\sin ^2}x - \int {\sin x\cos x} dx \cr & 2\int {\sin x\cos x} dx = {\sin ^2}x \cr & {\text{Solve for }}\int {\sin x\cos x} dx \cr & \int {\sin x\cos x} dx = \frac{1}{2}{\sin ^2}x + C \cr & \cr & {\text{Integrate by substitution}} \cr & {\text{Let }}u = \sin x,{\text{ }}du = \cos xdx, \cr & \int {\sin x\cos x} dx = \int {udu} \cr & = \frac{1}{2}{u^2} + C \cr & {\text{Back - substitute }}u = \sin x \cr & = \frac{1}{2}{\sin ^2}x + C \cr & \cr & {\text{The results are the same}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.