Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.4 Triple Integrals - 13.4 Exercises - Page 1004: 33

Answer

$$\frac{{256}}{9}$$

Work Step by Step

$$\eqalign{ & \int_0^2 {\int_0^4 {\int_{{y^2}}^4 {\sqrt x dzdxdy} } } \cr & {\text{Integrate with respect to }}z \cr & = \int_0^2 {\int_0^4 {\left[ {z\sqrt x } \right]_{{y^2}}^4dxdy} } \cr & = \int_0^2 {\int_0^4 {\left[ {4\sqrt x - {y^2}\sqrt x } \right]dxdy} } \cr & = \int_0^2 {\int_0^4 {\left( {4 - {y^2}} \right){x^{1/2}}dxdy} } \cr & {\text{Integrate with respect to }}x \cr & = \int_0^2 {\left( {4 - {y^2}} \right)\left[ {\frac{2}{3}{x^{3/2}}} \right]_0^4dy} \cr & = \frac{2}{3}\int_0^2 {\left( {4 - {y^2}} \right)\left( 8 \right)dy} \cr & = \frac{{16}}{3}\int_0^2 {\left( {4 - {y^2}} \right)dy} \cr & {\text{Integrate with respect to }}y \cr & = \frac{{16}}{3}\left[ {4y - \frac{1}{3}{y^3}} \right]_0^2 \cr & = \frac{{16}}{3}\left[ {4\left( 2 \right) - \frac{1}{3}{{\left( 2 \right)}^3}} \right] \cr & = \frac{{16}}{3}\left( {\frac{{16}}{3}} \right) \cr & = \frac{{256}}{9} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.